Anglo-Assamese

Number System Class 9 Assamese Medium:

সংখ্যা প্ৰণালী নৱম শ্ৰেণী অনুশীলনী 1.6

In this article, we have provided detailed solutions for Number System Class 9 Assamese Medium Question Answer exercise 1.6 (SEBA Class 9 Maths Exercise 1.6) . We hope this article will help you in your studies. If you have any doubts about this lesson (SEBA Class 9 Maths Exercise 1.6) please visit our doubt section and ask your questions. We are ready to help you.

SEBA Class 9 Maths Exercise 1.6
Important Notes: সূচকৰ বিধি (Law of Exponents)

   (i)   \(a^m \times a^n = a^{m+n}\)

  (ii)  \(\frac{a^m}{a^n} = a^{m-n}, \quad \text{where } m > n\)

  (iii)  \((a^m)^n = a^{m \times n}\)

  (iv)  \((ab)^m = a^m \times b^m\)

  (v)   \(\left(\frac{a}{b}\right)^m = \frac{a^m}{b^m}, \quad b \neq 0\)

  (vi)  \(a^0 = 1, \quad a \neq 0\)

  (vii) \(a^{-m} = \frac{1}{a^m}, \quad a \neq 0\)

 (viii)  \(a^{\frac{m}{n}} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m\)

সংখ্যা প্ৰণালী নৱম শ্ৰেণী অধ্যায়-1 সমাধানঃ

SEBA Class 9 Maths Exercise 1.6 Solutions Assamese Medium:

সংখ্যা প্ৰণালী নৱম শ্ৰেণী অনুশীলনী-1.6
  SEBA Class 9 Maths Exercise 1.6 Q1. 
  মান উলিওৱাঃ

সমাধানঃ

 (i)  \(64^\frac{1}{2} \)

\(= (8^2)^\frac{1}{2} \)  

\(= 8^1 \)    [Rule:\((a^m)^n = a^{m \times n}\), \( 2 × \frac{1}{2} = 1\) ]

\(= 8 \)            

(ii)  \(32^\frac{1}{5} \)

\(= (2^5)^\frac{1}{5} \) 

\(= 2^1 \)    [Rule:\((a^m)^n = a^{m \times n}\), \( 5 × \frac{1}{5} = 1\) ]

\(= 2 \)

(iii)  \(125^\frac{1}{3} \)

\(= (5^3)^\frac{1}{3} \)

\(= 5^1 \)    [Rule:\((a^m)^n = a^{m \times n}\), \( 3 × \frac{1}{3} = 1\) ]

\(= 5 \)

 
  SEBA Class 9 Maths Exercise 1.6 Q2.
  মান উলিওৱাঃ
সমাধানঃ

(i) \(9^\frac{3}{2} \)

\(= (3^2)^\frac{3}{2} \)

\(= 3^3 \)

\(= 27 \)

(ii)  \(32^\frac{2}{5} \)

\(= (2^5)^\frac{2}{5} \)

\(= (2^2 \)

\(= 4 \)

(iii) \(16^\frac{3}{4} \)

\(= (2^4)^\frac{3}{4} \)

\(= 2^3 \)

\(= 8\)

(iv)  \(125^\frac{-1}{3} \)

\(= (5^3)^\frac{-1}{3} \)

\(= 5^{-1} \) 

\(=\frac{1}{5}\)

 SEBA Class 9 Maths Exercise 1.6Q3.
 সৰল কৰাঃ

(i) \(2^\frac{2}{3}\cdot 2^\frac{1}{5} \)

\(= 2^{\frac{2}{3} + \frac{1}{5}} \)

\(= 2^{\frac{10 + 3}{15}} \)

\(= 2^{\frac{13}{15}} \)

(ii) \( (3^{\frac{1}{3}})^7 \)

\(= (3^{-3})^7 \)

\(= 3^{-21} \)

(iii) \(\frac{11^\frac{1}{2}}{11^\frac{1}{4}} \)

\(= 11^{\frac{1}{2} – \frac{1}{4}} \)

\(= 2^{\frac{2-1}{4}} \)

\(= 2^{\frac{1}{4}} \)

(iv) \(7^\frac{1}{2}\cdot 8^\frac{1}{2} \)

\(= (7 × 8)^{\frac{1}{2}} \)

\(= 56^{\frac{1}{2}} \)

Related Topics

error: Content is protected !!